On Kernel Formulas and Dispersionless Hirota Equations

نویسندگان

  • Yu-Tung Chen
  • Ming-Hsien Tu
چکیده

We rederive dispersionless Hirota equations of the dispersionless Toda hierarchy from the method of kernel formula provided by Carroll and Kodama. We then apply the method to derive dispersionless Hirota equations of the extended dispersionless BKP(EdBKP) hierarchy. Moreover, we verify associativity equations (WDVV equations) in the EdBKP hierarchy from dispersionless Hirota equations and give a realization of associative algebra with structure constants expressed in terms of residue formula. PACS: 02.30.Ik

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solution of the Dispersionless Hirota Equations

The dispersionless differential Fay identity is shown to be equivalent to a kernel expansion providing a universal algebraic characterization and solution of the dispersionless Hirota equations. Some calculations based on D-bar data of the action are also indicated.

متن کامل

Dispersionless Hirota equations of two-component BKP hierarchy

The BKP hierarchy has a two-component analogue (the 2-BKP hierarchy). Dispersionless limit of this multi-component hierarchy is considered on the level of the τ -function. The so called dispersionless Hirota equations are obtained from the Hirota equations of the τ -function. These dispersionless Hirota equations turn out to be equivalent to a system of Hamilton-Jacobi equations. Other relevant...

متن کامل

On Dispersionless Hirota Type Equations

Various connections between 2-D gravity and KdV, dKdV, inverse scattering, etc. are established. For KP we show how to extract from the dispersionless limit of the Fay differential identity of Takasaki-Takebe the collection of differential equations for F = log(τ ) which play the role of Hirota type equations in the dispersionless theory. 1. HIROTA EQUATIONS In [7] we showed how second derivati...

متن کامل

ar X iv : h ep - t h / 02 01 26 7 v 1 3 1 Ja n 20 02 FIAN / TD - 02 / 02 ITEP / TH - 04 / 02 On Associativity Equations 1

We consider the associativity or Witten-Dijkgraaf-Verlinde-Verlinde (WDVV) equations and discuss one of the most relevant for non-perturbative physics class of their solutions based on existence of the residue formulas. It is demonstrated for this case that the proof of associativity equations is reduced to the problem of solving system of algebraic linear equations. The particular examples of ...

متن کامل

On Associativity Equations 1

We consider the associativity or Witten-Dijkgraaf-Verlinde-Verlinde (WDVV) equations and discuss one of the most relevant for non-perturbative physics class of their solutions based on existence of the residue formulas. It is demonstrated for this case that the proof of associativity equations is reduced to the problem of solving system of algebraic linear equations. The particular examples of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008